首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9871篇
  免费   752篇
  国内免费   2592篇
化学   12153篇
晶体学   94篇
力学   39篇
综合类   121篇
数学   95篇
物理学   713篇
  2024年   12篇
  2023年   145篇
  2022年   262篇
  2021年   731篇
  2020年   735篇
  2019年   585篇
  2018年   524篇
  2017年   500篇
  2016年   641篇
  2015年   563篇
  2014年   532篇
  2013年   1030篇
  2012年   804篇
  2011年   624篇
  2010年   427篇
  2009年   584篇
  2008年   563篇
  2007年   555篇
  2006年   462篇
  2005年   401篇
  2004年   357篇
  2003年   309篇
  2002年   254篇
  2001年   186篇
  2000年   187篇
  1999年   167篇
  1998年   150篇
  1997年   121篇
  1996年   110篇
  1995年   114篇
  1994年   98篇
  1993年   80篇
  1992年   65篇
  1991年   62篇
  1990年   37篇
  1989年   62篇
  1988年   40篇
  1987年   14篇
  1986年   16篇
  1985年   14篇
  1984年   18篇
  1983年   10篇
  1982年   17篇
  1981年   5篇
  1980年   8篇
  1979年   8篇
  1978年   5篇
  1976年   6篇
  1975年   4篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Cationic compounds often serve as antibacterial materials for a wide range of applications. However, the relationship of topology−antibacterial activity has been rarely revealed. Herein, three cationic polythioethers (CPTEs) with hyperbranched topologies are well designed and facilely synthesized via an all-click chemistry strategy (including thiol-ene and epoxy-amine additions). These as-prepared CPTEs were found to exhibited outstanding antibacterial activity against Escherichia coli and Staphylococcus aureus with minimum inhibitory concentrations against E. coli of 7.3, 14.6, and 14.6 μg ml−1, and against S. aureus of 14.6, 29.2, and 29.2 μg ml−1, respectively. The antibacterial activity is coincident with their degree of branching (DB, their DB values of 0.81, 0.48, and 0.27), which is mainly attributed to the inherent three-dimensional structure. The present strategy reveals the relationship of polymer topology and antibacterial activity, providing a novel possibility for designing and/or synthesis of high-efficiency antibacterial agents.  相似文献   
72.
We present a new approach for the identification of inhibitors of phosphorylation-dependent protein–protein interaction domains, in which phenolic fragments are adapted by in silico O-phosphorylation before docking-based screening. From a database of 10 369 180 compounds, we identified 85 021 natural product-derived phenolic fragments, which were virtually O-phosphorylated and screened for in silico binding to the STAT3 SH2 domain. Nine screening hits were then synthesized, eight of which showed a degree of in vitro inhibition of STAT3. After analysis of its selectivity profile, the most potent inhibitor was then developed to Stafia-1, the first small molecule shown to preferentially inhibit the STAT family member STAT5a over the close homologue STAT5b. A phosphonate prodrug based on Stafia-1 inhibited STAT5a with selectivity over STAT5b in human leukemia cells, providing the first demonstration of selective in vitro and intracellular inhibition of STAT5a by a small-molecule inhibitor.  相似文献   
73.
Novel functions emerge from novel structures. To develop efficient catalytic systems for challenging chemical transformations, chemists often seek inspirations from enzymatic catalysis. A large number of iron complexes supported by nitrogen-rich multidentate ligands have thus been developed to mimic oxo-transfer reactivity of dioxygen-activating metalloenzymes. Such efforts have significantly advanced our understanding of the reaction mechanisms by trapping key intermediates and elucidating their geometric and electronic properties. Critical to the success of this biomimetic approach is the design and synthesis of elaborate ligand systems to balance the thermodynamic stability, structural adaptability, and chemical reactivity. In this Concept article, representative design strategies for biomimetic atom-transfer chemistry are discussed from the perspectives of “ligand builders”. Emphasis is placed on how the primary coordination sphere is constructed, and how it can be elaborated further by rational design for desired functions.  相似文献   
74.
Platinum-based chemotherapy persists to be the only effective therapeutic option against a wide variety of tumours. Nevertheless, the acquisition of platinum resistance is utterly common, ultimately cornering conventional platinum drugs to only palliative in many patients. Thus, encountering alternatives that are both effective and non-cross-resistant is urgent. In this work, we report the synthesis, reduction studies, and luminescent properties of a series of cyclometallated (C,N,N′)PtIV compounds derived from amine–imine ligands, and their remarkable efficacy at the high nanomolar range and complete lack of cross-resistance, as an intrinsic property of the platinacycle, against multiplatinum-resistant colorectal cancer (CRC) and castration-resistant prostate cancer (CRPC) metastatic cell lines generated for this work. We have also determined that the compounds are effective and selective for a broader cancer panel, including breast and lung cancer. Additionally, selected compounds have been further evaluated, finding a shift in their antiproliferative mechanism towards more cytotoxic and less cytostatic than cisplatin against cancer cells, being also able to oxidize cysteine residues and inhibit topoisomerase II, thereby holding great promise as future improved alternatives to conventional platinum drugs.  相似文献   
75.
A series of homoleptic and heteroleptic bismuth(III) flavonolate complexes derived from six flavonols of varying substitution have been synthesised and structurally characterised. The complexes were evaluated for antibacterial activity towards several problematic Gram-positive (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE)) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. The cell viability of COS-7 (monkey kidney) cells treated with the bismuth flavonolates was also studied to determine the effect of the complexes on mammalian cells. The heteroleptic complexes [BiPh(L)2] (in which L=flavonolate) showed good antibacterial activity towards all of the bacteria but reduced COS-7 cell viability in a concentration-dependent manner. The homoleptic complexes [Bi(L)3] exhibited activity towards the Gram-positive bacteria and showed low toxicity towards the mammalian cell line. Bismuth uptake studies in VRE and COS-7 cells treated with the bismuth flavonolate complexes indicated that Bi accumulation is influenced by both the substitution of the flavonolate ligands and the degree of substitution at the bismuth centre.  相似文献   
76.
One of the most effective ways to cope with the problems of global warming and the energy shortage crisis is to develop renewable and clean energy sources. To achieve a carbon-neutral energy cycle, advanced carbon sequestration technologies are urgently needed, but because CO2 is a thermodynamically stable molecule with the highest carbon valence state of +4, this process faces many challenges. In recent years, electrochemical CO2 reduction has become a promising approach to fix and convert CO2 into high-value-added fuels and chemical feedstock. However, the large-scale commercial use of electrochemical CO2 reduction systems is hindered by poor electrocatalyst activity, large overpotential, low energy conversion efficiency, and product selectivity in reducing CO2. Therefore, there is an urgent need to rationally design highly efficient, stable, and scalable electrocatalysts to alleviate these problems. This minireview also aims to classify heterogeneous nanostructured electrocatalysts for the CO2 reduction reaction (CDRR).  相似文献   
77.
Haouamines A, B, and their derivatives were synthesized via Suzuki–Miyaura coupling and three key cyclization reactions as follows: the newly developed palladium(0)-catalyzed arylative cyclization of phenylalanine-derived alkyne–aldehydes with 2-bromoarylboronic acid (an “anti-Wacker”-type cyclization); BF3 ⋅ OEt2-promoted Friedel–Crafts-type cyclization of symmetrical electron-rich aromatic rings adjacent to a tertiary allylic alcohol leading to the indeno-tetrahydropyridine skeleton; and (cyanomethyl)trimethylphosphonium iodide-mediated macrocyclization of amino alcohols to afford aza-paracyclophane precursors. The palladium-catalyzed reduction of mono- and di-triflate intermediates in the later stages enabled the alteration of both the position and number of hydroxyl groups on the C-ring. The instability of haouamine B was dramatically improved by salt formation with formic acid. An unambiguous evaluation of the cytotoxicity of the prepared haouamine derivative formates with and without hydroxyl groups at different positions on the C-ring indicated that the catechol structure in haouamine B produced weak cytotoxicity.  相似文献   
78.
An original method for determining the handedness of individual non-centrosymmetric crystals in a mixture using a tightly-focused, circularly polarized X-ray beam is presented. The X-ray natural circular dichroism (XNCD) spectra recorded at the metal K-edge on selected crystals of [Δ-M(en)3](NO3)2 and [Λ-M(en)3](NO3)2 (M=CoII, NiII) show extrema at the metal pre-edge (7712 eV for Co, 8335 eV for Ni). A mapping of a collection of some 220 crystals was performed at the respective energies by using left and right circular polarizations. The difference in absorption for the two polarizations, being either negative or positive, directly yielded the handedness of the crystal volume probed by the beam. By using this technique, it was found that the addition of l -ascorbic acid during the synthesis of [Co(en)3](NO3)2 resulted in an enantiomeric enrichment of the Λ-isomer of 67±13 %, whereas the Ni analogue was similarly, but conversely, enriched in the Δ-isomer (65±22 %).  相似文献   
79.
Peroxidase-mimicking nanozymes such as Fe3O4 nanoparticles are promising substitutes for natural enzymes like horseradish peroxidase. However, most such nanozymes work efficiently only in acidic conditions. In this work, the influence of various liposomes on nanozyme activity was studied. By introducing negatively charged liposomes, peroxidase-mimicking nanozymes achieved oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in neutral and even alkaline conditions, although the activity towards anionic 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inhibited. The Fe3O4 nanoparticles adsorbed on the liposomes without disrupting membrane integrity as confirmed by fluorescence quenching, dye leakage assays, and cryo-electron microscopy. Stabilization of the blue-colored oxidized products of TMB by electrostatic interactions was believed to be the reason for the enhanced activity. This work has introduced lipids to nanozyme research, and it also has practically important applications for using nanozymes at neutral pH, such as the detection of hydrogen peroxide and glucose.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号